8,944 research outputs found

    PathLocdb: a comprehensive database for the subcellular localization of metabolic pathways and its application to multiple localization analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eukaryotes, the cell is divided into several compartments enclosed by unitary membranes. Such compartmentalization is critical for cells to restrict different pathways to be carried out in different subcellular regions. The summary and classification of subcellular localizations of metabolic pathways are the first steps towards understanding their roles in spatial differentiation and the specialization of metabolic pathways in different organisms.</p> <p>Results</p> <p>Integrating the subcellular localization of enzymes and their pathways from UniProt Knowledgebase and KEGG pathway databases, we present the first database for subcellular localization of 43014 pathways from 80676 UniProt entries and their pathway annotations from UniProt and KEGG pathway databases. To extract pathway localization across organisms, we defined 889 superpathways as clusters of basic pathways with the same pathway annotations from different organisms. Over eighty-eight percent of superpathways in the Swiss-Prot dataset occur in cytoplasm and mitochondria. And over seventy percent of UniProt superpathways have multiple localization annotations. We summarized four common reasons for the multiple localization of superpathways. Based on this database, we also discovered 88 potential transport systems between different steps of multiply localized pathways and 45 duplicated genes from 17 pathways, occurring in parallel in several locations in humans.</p> <p>Conclusions</p> <p>PathLocdb is a free web-accessible database that enables biochemical researchers to quickly access summarized subcellular localization of pathways from UniProt and KEGG pathway databases. As the first effort to systematically integrate pathway localization, this database is very useful in discovering the variation of localization of pathways between organisms and also cross-talk between different organelles within a pathway. The Pathlocdb database is available at http://pathloc.cbi.pku.edu.cn.</p

    High similarity of phylogenetic profiles of rate-limiting enzymes with inhibitory relation in Human, Mouse, Rat, budding Yeast and E. coli

    Get PDF
    Background: The phylogenetic profile is widely used to characterize functional linkage and conservation between proteins without amino acid sequence similarity. To survey the conservative regulatory properties of rate-limiting enzymes (RLEs) in metabolic inhibitory network across different species, we define the enzyme inhibiting pair as: where the first enzyme in a pair is the inhibitor provider and the second is the target of the inhibitor. Phylogenetic profiles of enzymes in the inhibiting pairs are further generated to measure the functional linkage of these enzymes during evolutionary history. Results: We find that the RLEs generate, on average, over half of all in vivo inhibitors in each surveyed model organism. And these inhibitors inhibit on average over 85% targets in metabolic inhibitory network and cover the majority of targets of cross-pathway inhibiting relations. Furthermore, we demonstrate that the phylogenetic profiles of the enzymes in inhibiting pairs in which at least one enzyme is rate-limiting often show higher similarities than those in common inhibiting enzyme pairs. In addition, RLEs, compared to common metabolic enzymes, often tend to produce ADP instead of AMP in conservative inhibitory networks. Conclusions: Combined with the conservative roles of RLEs in their efficiency in sensing metabolic signals and transmitting regulatory signals to the rest of the metabolic system, the RLEs may be important molecules in balancing energy homeostasis via maintaining the ratio of ATP to ADP in living cells. Furthermore, our results indicate that similarities of phylogenetic profiles of enzymes in the inhibiting enzyme pairs are not only correlated with enzyme topological importance, but also related with roles of the enzymes in metabolic inhibitory network. © 2011 licensee BioMed Central Ltd

    Human liver rate-limiting enzymes influence metabolic flux via branch points and inhibitors

    Get PDF
    Background: Rate-limiting enzymes, because of their relatively low velocity, are believed to influence metabolic flux in pathways. To investigate their regulatory role in metabolic networks, we look at the global organization and interactions between rate-limiting enzymes and compounds such as branch point metabolites and enzyme inhibitors in human liver. Results: Based on 96 rate-limiting enzymes and 132 branch point compounds from human liver, we found that rate-limiting enzymes surrounded 76.5% of branch points. In a compound conversion network from human liver, the 128 branch points involved showed a dramatically higher average degree, betweenness centrality and closeness centrality as a whole. Nearly half of the in vivo inhibitors were products of rate-limiting enzymes, and covered 75.34% of the inhibited targets in metabolic inhibitory networks. Conclusion: From global topological organization, rate-limiting enzymes as a whole surround most of the branch points; so they can influence the flux through branch points. Since nearly half of the in vivo enzyme inhibitors are produced by rate-limiting enzymes in human liver, these enzymes can initiate inhibitory regulation and then influence metabolic flux through their natural products. © 2009 Zhao and Qu; licensee BioMed Central Ltd

    Myeloid-specific expression of Stat3C results in conversion of bone marrow mesenchymal stem cells into alveolar type II epithelial cells in the lung

    Get PDF
    Bone marrow mesenchymal stem cells (BMSCs) and myeloid lineage cells originate from the bone marrow, and influence each other in vivo. To elucidate the mechanism that controls the interrelationship between these two cell types, the signaling pathway of signal transducer and activator of transcription 3 (Stat3) was activated by overexpressing Stat3C in a newly established c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mouse model. In this system, Stat3C-Flag fusion protein was overexpressed in myeloid lineage cells after doxycycline treatment. Stat3C overexpression induced systematic elevation of macrophages and neutrophils in multiple organs. In the lung, tissue neoplastic pneumocyte proliferation was observed. After in vitro cultured hSP-B 1.5-kb lacZ BMSCs were injected into the bitransgenic mice, BMSCs were able to repopulate in multiple organs, self-renew in the bone marrow and spleen, and convert into alveolar type II epithelial cells. The bone marrow transplantation study indicated that increases of myeloid lineage cells and BMSC-AT II cell conversion were due to malfunction of myeloid progenitor cells as a result of Stat3C overexpression. The study supports the concept that activation of the Stat3 pathway in myeloid cells plays an important role in BMSC function, including homing, repopulating and converting into residential AT II epithelial cells in the lung

    Clarity Trumps Content: An Experiment on Information Acquisition in Beauty Contests

    Get PDF
    We provide experimental evidence that under strong beauty contest incentives, players ignore signals from an information source with high content if the source has low clarity. Instead, they acquire equally costly signals from a source with higher clarity despite its lower content. Content measures how precisely an information source identifies an economic situation, whereas clarity measures how precisely the source content is commonly interpreted. Low clarity impairs players\u27 ability to coordinate. When signals are provided exogenously, our experimental results are less severe than theoretical predictions, but consistent with level-2 reasoning in a cognitive behavioral model. When players acquire signals endogenously, ignoring a high-content source is more severe than theoretical predictions. Our results imply that when beauty contest incentives are strong (e.g., short-horizon trading), investors can completely ignore a firm\u27s disclosure, despite its high content, if the disclosure is not sufficiently clear

    An Efficient Threshold-Driven Aggregate-Label Learning Algorithm for Multimodal Information Processing

    Get PDF
    The aggregate-label learning paradigm tackles the long-standing temporary credit assignment (TCA) problem in neuroscience and machine learning, enabling spiking neural networks to learn multimodal sensory clues with delayed feedback signals. However, the existing aggregate-label learning algorithms only work for single spiking neurons, and with low learning efficiency, which limit their real-world applicability. To address these limitations, we first propose an efficient threshold-driven plasticity algorithm for spiking neurons, namely ETDP. It enables spiking neurons to generate the desired number of spikes that match the magnitude of delayed feedback signals and to learn useful multimodal sensory clues embedded within spontaneous spiking activities. Furthermore, we extend the ETDP algorithm to support multi-layer spiking neural networks (SNNs), which significantly improves the applicability of aggregate-label learning algorithms. We also validate the multi-layer ETDP learning algorithm in a multimodal computation framework for audio-visual pattern recognition. Experimental results on both synthetic and realistic datasets show significant improvements in the learning efficiency and model capacity over the existing aggregate-label learning algorithms. It, therefore, provides many opportunities for solving real-world multimodal pattern recognition tasks with spiking neural networks

    Cellular Metabolic Network Analysis: Discovering Important Reactions in Treponema pallidum

    Get PDF
    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum&apos;s metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis
    corecore